skip to main content


Search for: All records

Creators/Authors contains: "Buzzanell, Patrice M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As part of National Science Foundation (NSF) sponsored Research in the Formation of Engineers (RFE), we have been focusing on inclusive teaching strategies for engineering professors. Now, in the presence of a pandemic and protests for racial justice in America, underrepresented students are facing unprecedented challenges as they navigate new situations of remote learning. This paper describes inclusive teaching strategies in the current context of isolating situations. Where possible, we point to examples of some specific virtual tools that instructors can use in their remote learning courses. 
    more » « less
  2. In this work-in-progress paper, we present a study design for exploring strategies to involve engineering faculty in inclusive teaching practices, which are practices that integrate informal mentoring strategies into everyday communication with students in efforts to improve their interest, capacity, and belongingness in engineering. As part of a larger NSF-funded study on the interactions of engineering professional formation with diversity and inclusion, we will use semi-structured interviews to investigate an electrical and computer engineering (ECE) faculty’s intention to implement inclusive teaching practices, using Fishbein and Ajzen’s reasoned action model to define intention. The interviews will be focused around an inclusive teaching “tip sheet” that was recently distributed to the ECE faculty. These interviews will allow us to characterize factors that influence the development of such an intention within the context of an engineering department, in order to make recommendations for administration. 
    more » « less
  3. Three broad and enduring issues have been identified in the professional formation of engineers: 1) the gap between what students learn in universities and what they practice upon graduation; 2) the limiting perception that engineering is solely technical, math, and theory-oriented; and 3) the lack of diversity (e.g., representation of a wide range of people, thought, and approaches toward engineering) and lack of inclusion (e.g., belonging and incorporating different perspectives, values, and ways of thinking and being in engineering) in many engineering programs. Although these are not new challenges in professional formation, these issues are highly complex, interconnected, and not amenable to simple solution. That is, they are “wicked” problems, which can be best understood and mitigated through design thinking, a human-centered approach based on empathy, ideation, and experimentation, as it is a useful perspective for addressing complex and ambiguous issues. Thus, this NSF-funded RFE study utilizes a design thinking approach and research activities to explore foundational understandings of formation and diversity and inclusion in engineering while concurrently addressing three project objectives: 1) To better prepare engineers for today’s workforce; 2) To broaden understandings of engineering practice as both social and technical; and 3) To create and sustain more diverse and inclusionary engineering programs. In this paper, we provide an overview of the multi-year project and discuss emerging findings and key outcomes from across all phases of the project. Specifically, we will showcase how the research has identified the concurrent ways that understandings of diversity and inclusion are impacted significantly by the local contexts (and cultures) of each department while being compounded by the larger College/University/discipline-wide understandings of who is an engineer and what skills legitimize the identity of “an engineer.” 
    more » « less
  4. This Research Work-in-Progress paper builds on previous literature related to the professional formation of engineers and issues pertaining to diversity and inclusion within engineering though a comparative analysis of two different disciplines. These issues are complex, interrelated and challenging to untangle, and thus require innovative strategies to explore them. Our larger study utilizes design thinking with an embedded mixed-methods research approach to investigate foundational understandings of professional formation and diversity and inclusion in engineering. Herein, we describe preliminary findings from co-design sessions we conducted in Biomedical Engineering (BME) and Electrical and Computer Engineering (ECE) at Purdue University. We compare the design solutions generated by stakeholders and discuss insights regarding the unique contexts and needs of each program, as well as the impacts of the different activities and contexts of the design sessions themselves. 
    more » « less
  5. Abstract Background

    Little is known about how students engage in ethical decision‐making, especially when designing in messy, real‐life contexts. To prepare ethically competent engineers, educators need a richer understanding of students' ethical decision‐making throughout the course of the design process.

    Purpose/Hypothesis

    This study examines students' intuitive ethical decision‐making as it emerges throughout the design process as well as when and how students engage in ethical reflection. Outlining these processes enables educators to better structure and support students' ethical reasoning.

    Design/Method

    We conducted 103 semi‐structured interviews with students in a multidisciplinary service‐learning program. To capture how ethical decision‐making unfolded over time, we sampled 13 students who had participated for multiple semesters on the same projects. The resulting 30 interviews were transcribed, coded, and thematically analyzed. We then explicated when and how students appeared to grapple with the ethical principles of beneficence, nonmaleficence, autonomy, and justice.

    Results

    The findings trace which ethical principles emerged as salient in each phase of the design process as well as what conditions and activities stimulated students' reflection on their ethical decision‐making.

    Conclusions

    Although certain phases of the design process appear to prompt consideration of specific principles, students' interactions with users and project partners appeared to stimulate the most reflection on their ethical decision‐making. We discuss how educators can leverage these and other reflection triggers to better structure and support students' ethical reasoning as well as strategies for making intuitive processes more explicit.

     
    more » « less
  6. Abstract

    The present study examined how design thinking processes help to facilitate difficult conversations for fostering organizational change toward greater inclusion and equity in undergraduate engineering programs. Regardless of the type of organization or institution, sustainable diversity and inclusion integration requires difficult conversations that can correspond with locale‐specific interventions and deep cultural transformation. We led a series of design sessions with stakeholders from two undergraduate engineering programs at a large, Midwestern, research university aimed at creating prototype solutions to diversity and inclusion problems. Following the sessions, we conducted interviews with 19 stakeholders to understand their perceptions of the design process in facilitating both difficult conversations and in enacting meaningful change. Our study uncovered that organizational cultures impacted participants’ perceptions of change possibilities and their role in change. We conclude with recommendations for adopting design practices and communication‐as‐design processes to create structures and interactive approaches for facilitating conversations toward inclusionary organizational change.

     
    more » « less
  7. Three broad issues have been identified in the professional formation of engineers: 1) the gap between what students learn in universities and what they practice upon graduation; 2) the limiting perception that engineering is solely technical, math, and theory oriented; and 3) the lack of diversity (representation of a wide range of people) and lack of inclusion (incorporation of different perspectives, values, and ways of thinking and being in engineering) in many engineering programs. These are not new challenges in engineering education, rather they are persistent and difficult to change. There have been countless calls to recruit and retain women and underrepresented minority group members into engineering careers and numerous strategies proposed to improve diversity, inclusion, and retention, as well as to calls to examine socio-technical integration in engineering cultures and education for professional formation. Despite the changes in some disciplinary profiles in engineering and the curricular reforms within engineering education, there still has not been the deep transformation needed to integrate inclusionary processes and thinking into professional formation. In part, the reason is that diversity and inclusion are still framed as simply “numbers problems” to be solved. What is needed instead is an approach that understands and explores diversity and inclusion as interrelated with the epistemological (what do engineers need to know) and ontological (what does it mean to be an engineer) underpinnings of engineering. These issues are highly complex, interconnected, and not amenable to simple solutions, that is, they are “wicked” problems. They require design thinking. Thus our NSF-funded Research in the Formation of Engineers (RFE) study utilizes a design thinking approach and research activities to explore foundational understandings of formation and diversity and inclusion in engineering while addressing the three project objectives: 1) Better prepare engineers for today’s workforce; 2) Broaden understandings of engineering practice as both social and technical; and 3) Create and sustain more diverse and inclusionary engineering programs. The project is organized around the three phases of the design process (inspiration, ideation, and implementation), and embedded within the design process is a longitudinal, multiphase, mixed-methods study. Although the goal is to eventually study these objectives on a broader scale, we begin with a smaller context: the School of Electrical and Computer Engineering (ECE) and the Weldon School of Biomedical Engineering (BME) at Purdue University. These schools share similarities with some common coursework and faculty, but also provide contrasts as BME’s undergraduate population, on average for recent semesters, has been 44-46% female, where ECE has been 13-14% female. Although BME has slightly more underrepresented minority students (7-8% versus 5%), approximately 60% of BME students are white, versus 40% for ECE. It is important to note that Purdue’s School of ECE offers B.S. degrees in Electrical Engineering (EE) and Computer Engineering (CmpE), which reflect unique disciplinary cultures. Additionally, the schools differ significantly on undergraduate enrollment. The BME enrollment was 278, whereas ECE’s enrollment was 675 in EE and 541 in CmpE1. In this paper we describe the background literature and the research design, including the study contexts, target subject populations, and procedures for quantitative and qualitative data collection and analysis. In addition, we present the data collected during the first phase of the research project. In our poster, we will present preliminary analysis of the first phase data. 
    more » « less